
Discrete Random Variable and Its Distributions

1 Definition of a Discrete Random Variable

A discrete random variable X is one that takes a countable number of
distinct values. It is described using a probability mass function (PMF), which
gives the probability of each possible value.

The probability that X takes a specific value xi is given by:

P (X = xi) = pX(xi), (1)

where pX(x) satisfies the following properties: 1. 0 ≤ pX(x) ≤ 1 for all x. 2.
The sum of all probabilities equals 1:∑

i

pX(xi) = 1. (2)

2 Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of a discrete random variable is
defined as:

FX(x) = P (X ≤ x) =
∑
xi≤x

pX(xi). (3)

3 Expectation and Variance

3.1 Expectation (Mean)

E[X] =
∑
i

xipX(xi). (4)

3.2 Variance

V ar(X) = E[X2]− (E[X])2, (5)

where
E[X2] =

∑
i

x2
i pX(xi). (6)
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4 Common Discrete Distributions

4.1 Bernoulli Distribution Bern(p)

P (X = x) =

{
p, x = 1,

1− p, x = 0.
(7)

Mean: E[X] = p, Variance: V ar(X) = p(1− p).

4.2 Binomial Distribution Bin(n, p)

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n. (8)

Mean: E[X] = np, Variance: V ar(X) = np(1− p).

4.3 Poisson Distribution Pois(λ)

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . . (9)

Mean: E[X] = λ, Variance: V ar(X) = λ.

4.4 Geometric Distribution Geom(p)

P (X = k) = (1− p)k−1p, k = 1, 2, 3, . . . . (10)

Mean: E[X] = 1
p , Variance: V ar(X) = 1−p

p2 .

4.5 Hypergeometric Distribution Hypergeo(N,K, n)

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , max(0, n− (N −K)) ≤ k ≤ min(n,K). (11)

Mean: E[X] = nK
N , Variance: V ar(X) = nK

N
N−K
N

N−n
N−1 .

5 Law of Large Numbers and Central Limit The-
orem

5.1 Law of Large Numbers (LLN)

The Law of Large Numbers states that as the number of observations increases,
the sample mean of a sequence of independent and identically distributed (i.i.d.)
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random variables converges to the expected value. Formally, if X1, X2, . . . , Xn

are i.i.d. with expectation E[X], then:

lim
n→∞

1

n

n∑
i=1

Xi = E[X] (almost surely). (12)

This theorem justifies the idea that larger samples provide better estimates of
the true mean.

5.2 Central Limit Theorem (CLT)

The Central Limit Theorem states that the sum (or mean) of a large number
of i.i.d. random variables, regardless of their original distribution, approaches
a normal distribution as the sample size grows. Specifically, if X1, X2, . . . , Xn

are i.i.d. with mean µ and variance σ2, then:∑n
i=1 Xi − nµ

σ
√
n

d−→ N(0, 1) as n → ∞. (13)

This theorem is fundamental in statistics, as it allows normal approximations
for many types of problems involving sums of random variables.

6 Conclusion

Discrete random variables are fundamental in probability and statistics. The key
aspects include the use of probability mass functions, cumulative distribution
functions, and properties like expectation and variance. Various distributions
such as Bernoulli, Binomial, Poisson, Geometric, and Hypergeometric model
different real-world scenarios. The Law of Large Numbers ensures that sample
averages converge to the true mean, while the Central Limit Theorem explains
why normal distribution approximations are widely applicable in statistical in-
ference.
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